If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-69x+270=0
a = 1; b = -69; c = +270;
Δ = b2-4ac
Δ = -692-4·1·270
Δ = 3681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3681}=\sqrt{9*409}=\sqrt{9}*\sqrt{409}=3\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-69)-3\sqrt{409}}{2*1}=\frac{69-3\sqrt{409}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-69)+3\sqrt{409}}{2*1}=\frac{69+3\sqrt{409}}{2} $
| 2y=5y+21 | | 2xN=14 | | 8=x-5÷7 | | x÷0.9=10 | | 42*x=731 | | -3=2+a/12 | | -1+4x=5(1+x) | | Y=9.3x | | F(14)=7x-15 | | 4(x-6)=-(2-6x) | | 42/731=x | | x*42=731 | | Mx8=48 | | n/8+5=11 | | -16-5v+v=7v+5v | | ⅓x-7=15 | | h,15=16,3 | | -1/2=-15/18h | | 4(x-3)=3(x+3)=3x-1 | | x^+10x+45=0 | | ¼x=-2 | | 4/k-5=6/7 | | t+7=-6-3 | | 3(2-x)-(x+2)=55+9(x-3) | | -8n-4=-4n+4 | | 4x=123/4 | | 63+x=92 | | x-93=71 | | 0.40x=x-178 | | x+50=97 | | x+50=-90 | | 125+9c=30c |